// GifEncoder - write out an image as a GIF // // Transparency handling and variable bit size courtesy of Jack Palevich. // // Copyright (C)1996,1998 by Jef Poskanzer . All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS // OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY // OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF // SUCH DAMAGE. // // Visit the ACME Labs Java page for up-to-date versions of this and other // fine Java utilities: http://www.acme.com/java/ package Acme.JPM.Encoders; import java.util.*; import java.io.*; import java.awt.Image; import java.awt.image.*; /// Write out an image as a GIF. //

// Fetch the software.
// Fetch the entire Acme package. //

// @see ToGif public class GifEncoder extends ImageEncoder { private boolean interlace = false; /// Constructor from Image. // @param img The image to encode. // @param out The stream to write the GIF to. public GifEncoder( Image img, OutputStream out ) throws IOException { super( img, out ); } /// Constructor from Image with interlace setting. // @param img The image to encode. // @param out The stream to write the GIF to. // @param interlace Whether to interlace. public GifEncoder( Image img, OutputStream out, boolean interlace ) throws IOException { super( img, out ); this.interlace = interlace; } /// Constructor from ImageProducer. // @param prod The ImageProducer to encode. // @param out The stream to write the GIF to. public GifEncoder( ImageProducer prod, OutputStream out ) throws IOException { super( prod, out ); } /// Constructor from ImageProducer with interlace setting. // @param prod The ImageProducer to encode. // @param out The stream to write the GIF to. public GifEncoder( ImageProducer prod, OutputStream out, boolean interlace ) throws IOException { super( prod, out ); this.interlace = interlace; } int width, height; int[][] rgbPixels; void encodeStart( int width, int height ) throws IOException { this.width = width; this.height = height; rgbPixels = new int[height][width]; } void encodePixels( int x, int y, int w, int h, int[] rgbPixels, int off, int scansize ) throws IOException { // Save the pixels. for ( int row = 0; row < h; ++row ) System.arraycopy( rgbPixels, row * scansize + off, this.rgbPixels[y + row], x, w ); } Acme.IntHashtable colorHash; void encodeDone() throws IOException { int transparentIndex = -1; int transparentRgb = -1; // Put all the pixels into a hash table. colorHash = new Acme.IntHashtable(); int index = 0; for ( int row = 0; row < height; ++row ) { int rowOffset = row * width; for ( int col = 0; col < width; ++col ) { int rgb = rgbPixels[row][col]; boolean isTransparent = ( ( rgb >>> 24 ) < 0x80 ); if ( isTransparent ) { if ( transparentIndex < 0 ) { // First transparent color; remember it. transparentIndex = index; transparentRgb = rgb; } else if ( rgb != transparentRgb ) { // A second transparent color; replace it with // the first one. rgbPixels[row][col] = rgb = transparentRgb; } } GifEncoderHashitem item = (GifEncoderHashitem) colorHash.get( rgb ); if ( item == null ) { if ( index >= 256 ) throw new IOException( "too many colors for a GIF" ); item = new GifEncoderHashitem( rgb, 1, index, isTransparent ); ++index; colorHash.put( rgb, item ); } else ++item.count; } } // Figure out how many bits to use. int logColors; if ( index <= 2 ) logColors = 1; else if ( index <= 4 ) logColors = 2; else if ( index <= 16 ) logColors = 4; else logColors = 8; // Turn colors into colormap entries. int mapSize = 1 << logColors; byte[] reds = new byte[mapSize]; byte[] grns = new byte[mapSize]; byte[] blus = new byte[mapSize]; for ( Enumeration e = colorHash.elements(); e.hasMoreElements(); ) { GifEncoderHashitem item = (GifEncoderHashitem) e.nextElement(); reds[item.index] = (byte) ( ( item.rgb >> 16 ) & 0xff ); grns[item.index] = (byte) ( ( item.rgb >> 8 ) & 0xff ); blus[item.index] = (byte) ( item.rgb & 0xff ); } GIFEncode( out, width, height, interlace, (byte) 0, transparentIndex, logColors, reds, grns, blus ); } byte GetPixel( int x, int y ) throws IOException { GifEncoderHashitem item = (GifEncoderHashitem) colorHash.get( rgbPixels[y][x] ); if ( item == null ) throw new IOException( "color not found" ); return (byte) item.index; } static void writeString( OutputStream out, String str ) throws IOException { byte[] buf = str.getBytes(); out.write( buf ); } // Adapted from ppmtogif, which is based on GIFENCOD by David // Rowley . Lempel-Zim compression // based on "compress". int Width, Height; boolean Interlace; int curx, cury; int CountDown; int Pass = 0; void GIFEncode( OutputStream outs, int Width, int Height, boolean Interlace, byte Background, int Transparent, int BitsPerPixel, byte[] Red, byte[] Green, byte[] Blue ) throws IOException { byte B; int LeftOfs, TopOfs; int ColorMapSize; int InitCodeSize; int i; this.Width = Width; this.Height = Height; this.Interlace = Interlace; ColorMapSize = 1 << BitsPerPixel; LeftOfs = TopOfs = 0; // Calculate number of bits we are expecting CountDown = Width * Height; // Indicate which pass we are on (if interlace) Pass = 0; // The initial code size if ( BitsPerPixel <= 1 ) InitCodeSize = 2; else InitCodeSize = BitsPerPixel; // Set up the current x and y position curx = 0; cury = 0; // Write the Magic header writeString( outs, "GIF89a" ); // Write out the screen width and height Putword( Width, outs ); Putword( Height, outs ); // Indicate that there is a global colour map B = (byte) 0x80; // Yes, there is a color map // OR in the resolution B |= (byte) ( ( 8 - 1 ) << 4 ); // Not sorted // OR in the Bits per Pixel B |= (byte) ( ( BitsPerPixel - 1 ) ); // Write it out Putbyte( B, outs ); // Write out the Background colour Putbyte( Background, outs ); // Pixel aspect ratio - 1:1. //Putbyte( (byte) 49, outs ); // Java's GIF reader currently has a bug, if the aspect ratio byte is // not zero it throws an ImageFormatException. It doesn't know that // 49 means a 1:1 aspect ratio. Well, whatever, zero works with all // the other decoders I've tried so it probably doesn't hurt. Putbyte( (byte) 0, outs ); // Write out the Global Colour Map for ( i = 0; i < ColorMapSize; ++i ) { Putbyte( Red[i], outs ); Putbyte( Green[i], outs ); Putbyte( Blue[i], outs ); } // Write out extension for transparent colour index, if necessary. if ( Transparent != -1 ) { Putbyte( (byte) '!', outs ); Putbyte( (byte) 0xf9, outs ); Putbyte( (byte) 4, outs ); Putbyte( (byte) 1, outs ); Putbyte( (byte) 0, outs ); Putbyte( (byte) 0, outs ); Putbyte( (byte) Transparent, outs ); Putbyte( (byte) 0, outs ); } // Write an Image separator Putbyte( (byte) ',', outs ); // Write the Image header Putword( LeftOfs, outs ); Putword( TopOfs, outs ); Putword( Width, outs ); Putword( Height, outs ); // Write out whether or not the image is interlaced if ( Interlace ) Putbyte( (byte) 0x40, outs ); else Putbyte( (byte) 0x00, outs ); // Write out the initial code size Putbyte( (byte) InitCodeSize, outs ); // Go and actually compress the data compress( InitCodeSize+1, outs ); // Write out a Zero-length packet (to end the series) Putbyte( (byte) 0, outs ); // Write the GIF file terminator Putbyte( (byte) ';', outs ); } // Bump the 'curx' and 'cury' to point to the next pixel void BumpPixel() { // Bump the current X position ++curx; // If we are at the end of a scan line, set curx back to the beginning // If we are interlaced, bump the cury to the appropriate spot, // otherwise, just increment it. if ( curx == Width ) { curx = 0; if ( ! Interlace ) ++cury; else { switch( Pass ) { case 0: cury += 8; if ( cury >= Height ) { ++Pass; cury = 4; } break; case 1: cury += 8; if ( cury >= Height ) { ++Pass; cury = 2; } break; case 2: cury += 4; if ( cury >= Height ) { ++Pass; cury = 1; } break; case 3: cury += 2; break; } } } } static final int EOF = -1; // Return the next pixel from the image int GIFNextPixel() throws IOException { byte r; if ( CountDown == 0 ) return EOF; --CountDown; r = GetPixel( curx, cury ); BumpPixel(); return r & 0xff; } // Write out a word to the GIF file void Putword( int w, OutputStream outs ) throws IOException { Putbyte( (byte) ( w & 0xff ), outs ); Putbyte( (byte) ( ( w >> 8 ) & 0xff ), outs ); } // Write out a byte to the GIF file void Putbyte( byte b, OutputStream outs ) throws IOException { outs.write( b ); } // GIFCOMPR.C - GIF Image compression routines // // Lempel-Ziv compression based on 'compress'. GIF modifications by // David Rowley (mgardi@watdcsu.waterloo.edu) // General DEFINEs static final int BITS = 12; static final int HSIZE = 5003; // 80% occupancy // GIF Image compression - modified 'compress' // // Based on: compress.c - File compression ala IEEE Computer, June 1984. // // By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas) // Jim McKie (decvax!mcvax!jim) // Steve Davies (decvax!vax135!petsd!peora!srd) // Ken Turkowski (decvax!decwrl!turtlevax!ken) // James A. Woods (decvax!ihnp4!ames!jaw) // Joe Orost (decvax!vax135!petsd!joe) int n_bits; // number of bits/code int maxbits = BITS; // user settable max # bits/code int maxcode; // maximum code, given n_bits int maxmaxcode = 1 << BITS; // should NEVER generate this code final int MAXCODE( int n_bits ) { return ( 1 << n_bits ) - 1; } int[] htab = new int[HSIZE]; int[] codetab = new int[HSIZE]; int hsize = HSIZE; // for dynamic table sizing int free_ent = 0; // first unused entry // block compression parameters -- after all codes are used up, // and compression rate changes, start over. boolean clear_flg = false; // Algorithm: use open addressing double hashing (no chaining) on the // prefix code / next character combination. We do a variant of Knuth's // algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime // secondary probe. Here, the modular division first probe is gives way // to a faster exclusive-or manipulation. Also do block compression with // an adaptive reset, whereby the code table is cleared when the compression // ratio decreases, but after the table fills. The variable-length output // codes are re-sized at this point, and a special CLEAR code is generated // for the decompressor. Late addition: construct the table according to // file size for noticeable speed improvement on small files. Please direct // questions about this implementation to ames!jaw. int g_init_bits; int ClearCode; int EOFCode; void compress( int init_bits, OutputStream outs ) throws IOException { int fcode; int i /* = 0 */; int c; int ent; int disp; int hsize_reg; int hshift; // Set up the globals: g_init_bits - initial number of bits g_init_bits = init_bits; // Set up the necessary values clear_flg = false; n_bits = g_init_bits; maxcode = MAXCODE( n_bits ); ClearCode = 1 << ( init_bits - 1 ); EOFCode = ClearCode + 1; free_ent = ClearCode + 2; char_init(); ent = GIFNextPixel(); hshift = 0; for ( fcode = hsize; fcode < 65536; fcode *= 2 ) ++hshift; hshift = 8 - hshift; // set hash code range bound hsize_reg = hsize; cl_hash( hsize_reg ); // clear hash table output( ClearCode, outs ); outer_loop: while ( (c = GIFNextPixel()) != EOF ) { fcode = ( c << maxbits ) + ent; i = ( c << hshift ) ^ ent; // xor hashing if ( htab[i] == fcode ) { ent = codetab[i]; continue; } else if ( htab[i] >= 0 ) // non-empty slot { disp = hsize_reg - i; // secondary hash (after G. Knott) if ( i == 0 ) disp = 1; do { if ( (i -= disp) < 0 ) i += hsize_reg; if ( htab[i] == fcode ) { ent = codetab[i]; continue outer_loop; } } while ( htab[i] >= 0 ); } output( ent, outs ); ent = c; if ( free_ent < maxmaxcode ) { codetab[i] = free_ent++; // code -> hashtable htab[i] = fcode; } else cl_block( outs ); } // Put out the final code. output( ent, outs ); output( EOFCode, outs ); } // output // // Output the given code. // Inputs: // code: A n_bits-bit integer. If == -1, then EOF. This assumes // that n_bits =< wordsize - 1. // Outputs: // Outputs code to the file. // Assumptions: // Chars are 8 bits long. // Algorithm: // Maintain a BITS character long buffer (so that 8 codes will // fit in it exactly). Use the VAX insv instruction to insert each // code in turn. When the buffer fills up empty it and start over. int cur_accum = 0; int cur_bits = 0; int masks[] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF }; void output( int code, OutputStream outs ) throws IOException { cur_accum &= masks[cur_bits]; if ( cur_bits > 0 ) cur_accum |= ( code << cur_bits ); else cur_accum = code; cur_bits += n_bits; while ( cur_bits >= 8 ) { char_out( (byte) ( cur_accum & 0xff ), outs ); cur_accum >>= 8; cur_bits -= 8; } // If the next entry is going to be too big for the code size, // then increase it, if possible. if ( free_ent > maxcode || clear_flg ) { if ( clear_flg ) { maxcode = MAXCODE(n_bits = g_init_bits); clear_flg = false; } else { ++n_bits; if ( n_bits == maxbits ) maxcode = maxmaxcode; else maxcode = MAXCODE(n_bits); } } if ( code == EOFCode ) { // At EOF, write the rest of the buffer. while ( cur_bits > 0 ) { char_out( (byte) ( cur_accum & 0xff ), outs ); cur_accum >>= 8; cur_bits -= 8; } flush_char( outs ); } } // Clear out the hash table // table clear for block compress void cl_block( OutputStream outs ) throws IOException { cl_hash( hsize ); free_ent = ClearCode + 2; clear_flg = true; output( ClearCode, outs ); } // reset code table void cl_hash( int hsize ) { for ( int i = 0; i < hsize; ++i ) htab[i] = -1; } // GIF Specific routines // Number of characters so far in this 'packet' int a_count; // Set up the 'byte output' routine void char_init() { a_count = 0; } // Define the storage for the packet accumulator byte[] accum = new byte[256]; // Add a character to the end of the current packet, and if it is 254 // characters, flush the packet to disk. void char_out( byte c, OutputStream outs ) throws IOException { accum[a_count++] = c; if ( a_count >= 254 ) flush_char( outs ); } // Flush the packet to disk, and reset the accumulator void flush_char( OutputStream outs ) throws IOException { if ( a_count > 0 ) { outs.write( a_count ); outs.write( accum, 0, a_count ); a_count = 0; } } } class GifEncoderHashitem { public int rgb; public int count; public int index; public boolean isTransparent; public GifEncoderHashitem( int rgb, int count, int index, boolean isTransparent ) { this.rgb = rgb; this.count = count; this.index = index; this.isTransparent = isTransparent; } }