// CryptoUtils - some cryptography utilities // // Copyright (C) 1996 by Jef Poskanzer . All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS // OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY // OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF // SUCH DAMAGE. // // Visit the ACME Labs Java page for up-to-date versions of this and other // fine Java utilities: http://www.acme.com/java/ package Acme.Crypto; import java.io.*; /// Some cryptography utilities. //

// These are static methods used by a lot of the cryptography classes. // Most of them operate on byte arrays, which we call blocks. // They could be encapsulated in a "Block" class, but that would // mean a big efficiency hit - method calls are a lot more // expensive than array accesses. //

// Fetch the software.
// Fetch the entire Acme package. public class CryptoUtils { /// Utility routine to fill a block with zeros. public static void zeroBlock( byte[] block, int off, int len ) { for ( int i = off; i < off + len; ++i ) block[i] = 0; } /// Utility routine to fill a block with zeros. public static void zeroBlock( byte[] block ) { zeroBlock( block, 0, block.length ); } /// Utility routine to fill a block with random bytes. public static void randomBlock( byte[] block, int off, int len ) { for ( int i = off; i < off + len; ++i ) block[i] = (byte) ( Math.random() * 256.0 ); } /// Utility routine to fill a block with random bytes. public static void randomBlock( byte[] block ) { randomBlock( block, 0, block.length ); } /// Utility routine to XOR two blocks. public static void xorBlock( byte[] a, int aOff, byte[] b, int bOff, byte[] dst, int dstOff, int len ) { for ( int i = 0; i < len; ++i ) dst[dstOff + i] = (byte) ( a[aOff + i] ^ b[bOff + i] ); } /// Utility routine to XOR two blocks. public static void xorBlock( byte[] a, byte[] b, byte[] dst ) { xorBlock( a, 0, b, 0, dst, 0, a.length ); } /// Utility routine to copy one block to another. public static void copyBlock( byte[] src, int srcOff, byte[] dst, int dstOff, int len ) { for ( int i = 0; i < len; ++i ) dst[dstOff + i] = src[srcOff + i]; } /// Utility routine to copy one block to another. public static void copyBlock( byte[] src, byte[] dst ) { copyBlock( src, 0, dst, 0, src.length ); } /// Utility routine to check two blocks for equality. public static boolean equalsBlock( byte[] a, int aOff, byte[] b, int bOff, int len ) { for ( int i = 0; i < len; ++i ) if ( a[aOff + i] != b[bOff + i] ) return false; return true; } /// Utility routine to check two blocks for equality. public static boolean equalsBlock( byte[] a, byte[] b ) { return equalsBlock( a, 0, b, 0, a.length ); } /// Utility routine fill a block with a given byte. public static void fillBlock( byte[] block, int blockOff, byte b, int len ) { for ( int i = blockOff; i < blockOff + len; ++i ) block[i] = b; } /// Utility routine fill a block with a given byte. public static void fillBlock( byte[] block, byte b ) { fillBlock( block, 0, b, block.length ); } /// Squash bytes down to ints. public static void squashBytesToInts( byte[] inBytes, int inOff, int[] outInts, int outOff, int intLen ) { for ( int i = 0; i < intLen; ++i ) outInts[outOff + i] = ( ( inBytes[inOff + i * 4 ] & 0xff ) << 24 ) | ( ( inBytes[inOff + i * 4 + 1] & 0xff ) << 16 ) | ( ( inBytes[inOff + i * 4 + 2] & 0xff ) << 8 ) | ( ( inBytes[inOff + i * 4 + 3] & 0xff ) ); } /// Spread ints into bytes. public static void spreadIntsToBytes( int[] inInts, int inOff, byte[] outBytes, int outOff, int intLen ) { for ( int i = 0; i < intLen; ++i ) { outBytes[outOff + i * 4 ] = (byte) ( ( inInts[inOff + i] >>> 24 ) & 0xff ); outBytes[outOff + i * 4 + 1] = (byte) ( ( inInts[inOff + i] >>> 16 ) & 0xff ); outBytes[outOff + i * 4 + 2] = (byte) ( ( inInts[inOff + i] >>> 8 ) & 0xff ); outBytes[outOff + i * 4 + 3] = (byte) ( ( inInts[inOff + i] ) & 0xff ); } } /// Squash bytes down to ints, little-endian. public static void squashBytesToIntsLittle( byte[] inBytes, int inOff, int[] outInts, int outOff, int intLen ) { for ( int i = 0; i < intLen; ++i ) outInts[outOff + i] = ( ( inBytes[inOff + i * 4 ] & 0xff ) ) | ( ( inBytes[inOff + i * 4 + 1] & 0xff ) << 8 ) | ( ( inBytes[inOff + i * 4 + 2] & 0xff ) << 16 ) | ( ( inBytes[inOff + i * 4 + 3] & 0xff ) << 24 ); } /// Spread ints into bytes, little-endian. public static void spreadIntsToBytesLittle( int[] inInts, int inOff, byte[] outBytes, int outOff, int intLen ) { for ( int i = 0; i < intLen; ++i ) { outBytes[outOff + i * 4 ] = (byte) ( ( inInts[inOff + i] ) & 0xff ); outBytes[outOff + i * 4 + 1] = (byte) ( ( inInts[inOff + i] >>> 8 ) & 0xff ); outBytes[outOff + i * 4 + 2] = (byte) ( ( inInts[inOff + i] >>> 16 ) & 0xff ); outBytes[outOff + i * 4 + 3] = (byte) ( ( inInts[inOff + i] >>> 24 ) & 0xff ); } } /// Squash bytes down to shorts. public static void squashBytesToShorts( byte[] inBytes, int inOff, int[] outShorts, int outOff, int shortLen ) { for ( int i = 0; i < shortLen; ++i ) outShorts[outOff + i] = ( ( inBytes[inOff + i * 2 ] & 0xff ) << 8 ) | ( ( inBytes[inOff + i * 2 + 1] & 0xff ) ); } /// Spread shorts into bytes. public static void spreadShortsToBytes( int[] inShorts, int inOff, byte[] outBytes, int outOff, int shortLen ) { for ( int i = 0; i < shortLen; ++i ) { outBytes[outOff + i * 2 ] = (byte) ( ( inShorts[inOff + i] >>> 8 ) & 0xff ); outBytes[outOff + i * 2 + 1] = (byte) ( ( inShorts[inOff + i] ) & 0xff ); } } /// Squash bytes down to shorts, little endian. public static void squashBytesToShortsLittle( byte[] inBytes, int inOff, int[] outShorts, int outOff, int shortLen ) { for ( int i = 0; i < shortLen; ++i ) outShorts[outOff + i] = ( ( inBytes[inOff + i * 2 ] & 0xff ) ) | ( ( inBytes[inOff + i * 2 + 1] & 0xff ) << 8 ); } /// Spread shorts into bytes, little endian. public static void spreadShortsToBytesLittle( int[] inShorts, int inOff, byte[] outBytes, int outOff, int shortLen ) { for ( int i = 0; i < shortLen; ++i ) { outBytes[outOff + i * 2 ] = (byte) ( ( inShorts[inOff + i] ) & 0xff ); outBytes[outOff + i * 2 + 1] = (byte) ( ( inShorts[inOff + i] >>> 8 ) & 0xff ); } } /// Convert a block to a String representation. public static String toStringBlock( byte[] block, int off, int len ) { String hexits = "0123456789abcdef"; StringBuffer buf = new StringBuffer(); for ( int i = off; i < off + len; ++i ) { buf.append( hexits.charAt( ( block[i] >>> 4 ) & 0xf ) ); buf.append( hexits.charAt( block[i] & 0xf ) ); } return "[" + buf + "]"; } /// Convert a block to a String representation. public static String toStringBlock( byte[] block ) { return toStringBlock( block, 0, block.length ); } }